login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strongly unimodal partitions of n (strongly unimodal means strictly increasing then strictly decreasing).
12

%I #28 Mar 26 2014 14:41:44

%S 1,1,1,3,4,6,10,15,21,30,43,59,82,111,148,199,263,344,451,584,751,965,

%T 1230,1560,1973,2483,3110,3885,4834,5990,7405,9123,11202,13724,16762,

%U 20417,24815,30081,36377,43900,52860,63511,76166,91157,108886,129842

%N Number of strongly unimodal partitions of n (strongly unimodal means strictly increasing then strictly decreasing).

%H Alois P. Heinz, <a href="/A059618/b059618.txt">Table of n, a(n) for n = 0..1000</a>

%H R. C. Rhoades, <a href="http://math.stanford.edu/~rhoades/FILES/unimodal.pdf">Strongly Unimodal Sequences and Mixed Mock Modular Forms</a>

%F a(n) = A059619(n,0) = Sum_k A059619(n,k) for k>0 when n>0.

%F G.f.: sum(k>=0, x^k * prod(i=1..k-1, 1 + x^i)^2 ). - _Vladeta Jovovic_, Dec 05 2003

%e a(6) = 10 since 6 can be written as 6, 5+1, 4+2, 3+2+1, 2+4, 2+3+1, 1+5, 1+4+1, 1+3+2 or 1+2+3 (but for example neither 2+2+1+1 nor 1+2+2+1 which are only weakly unimodal).

%e From _Joerg Arndt_, Dec 09 2012: (Start)

%e The a(7) = 15 strongly unimodal compositions of 7 are

%e [ #] composition

%e [ 1] [ 1 2 3 1 ]

%e [ 2] [ 1 2 4 ]

%e [ 3] [ 1 3 2 1 ]

%e [ 4] [ 1 4 2 ]

%e [ 5] [ 1 5 1 ]

%e [ 6] [ 1 6 ]

%e [ 7] [ 2 3 2 ]

%e [ 8] [ 2 4 1 ]

%e [ 9] [ 2 5 ]

%e [10] [ 3 4 ]

%e [11] [ 4 2 1 ]

%e [12] [ 4 3 ]

%e [13] [ 5 2 ]

%e [14] [ 6 1 ]

%e [15] [ 7 ]

%e (End)

%p b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,

%p `if`(n=0, 1, add(b(n-j, j, 0), j=1..min(n, i-1))+

%p `if`(t=1, add(b(n-j, j, 1), j=i+1..n), 0)))

%p end:

%p a:= n-> b(n, 0, 1):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 21 2014

%t s[n_?Positive, k_] := s[n, k] = Sum[s[n - k, j], {j, 0, k - 1}]; s[0, 0] = 1; s[0, _] = 0; s[_?Negative, _] = 0; t[n_, k_] := t[n, k] = s[n, k] + Sum[t[n - k, j], {j, k + 1, n}]; a[n_] := t[n, 0]; Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Dec 06 2012, after _Vladeta Jovovic_ *)

%o (PARI) N=66; x='x+O('x^N); Vec(sum(n=0,N,x^(n) * prod(k=1,n-1,1+x^k)^2)) \\ _Joerg Arndt_, Mar 26 2014

%Y Cf. A000009, A000041, A001523, A059607, A059619.

%K nice,nonn

%O 0,4

%A _Henry Bottomley_, Jan 31 2001