login
T(n,m) = (1/m!)*Sum_{i=0..m} stirling1(m,i)*(2^i)*(2^i+1)*...*(2^i+n-1).
2

%I #10 Apr 28 2016 11:24:48

%S 1,1,1,2,1,2,6,7,4,1,6,24,48,68,73,56,28,8,1,24,120,360,940,2251,4704,

%T 8176,11488,12876,11440,8008,4368,1820,560,120,16,1,120,720,3000,

%U 12720,56660,247016,987252,3480536,10647035,28163200,64592320,129068160

%N T(n,m) = (1/m!)*Sum_{i=0..m} stirling1(m,i)*(2^i)*(2^i+1)*...*(2^i+n-1).

%F T(n, m) = Sum_{i=0..n} |stirling1(n, i)|*binomial(2^i, m).

%e Triangle starts:

%e 1, 1;

%e 1, 2, 1;

%e 2, 6, 7, 4, 1;

%e 6, 24, 48, 68, 73, 56, 28, 8, 1;

%e ...

%p with(combinat): for n from 0 to 10 do for m from 0 to 2^n do printf(`%d,`,sum(abs(stirling1(n,i))*binomial(2^i, m), i=0..n)) od: od:

%Y Cf. A059084, (row sums) A059588.

%K easy,nonn,tabf

%O 0,4

%A _Vladeta Jovovic_, Jan 23 2001

%E More terms from _James A. Sellers_, Jan 24 2001