Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 29 2019 10:07:20
%S 1,5,66,2431,252586,74327145,62062015500,147198472495020,
%T 992340657705109416,19023173201224270401428,
%U 1037283901500845276138040124,160915151663568862349180293275135,71031251058324655345105192111798148156,89229337105909072018801794323387547092631236
%N Expansion of generating function A_{UU}^(2)(4n;1,1,1).
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Barry/barry321.html">Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices</a>, Journal of Integer Sequences, 19, 2016, #16.3.5.
%H G. Kuperberg, <a href="https://arxiv.org/abs/math/0008184">Symmetry classes of alternating-sign matrices under one roof</a>, arXiv:math/0008184 [math.CO], 2000-2001. [Th. 5, but the formula is wrong]
%p A059489 := proc(n) local i, j, t1; t1 := (-3)^(n^2)*2^(2*n); for i to 2*n + 1 do for j to 2*n + 1 do if j mod 2 = 0 then t1 := t1*(3*j - 3*i + 2)/(j - i +2*n +1) end if end do end do; t1 end proc;
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 04 2001