login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

3-enumeration of 2n+1 X 2n+1 vertically symmetric alternating-sign matrices.
4

%I #23 Jan 17 2021 11:16:32

%S 1,1,5,126,16038,10320453,33590259846,553104735325740,

%T 46084184498427053436,19430969437346561065941390,

%U 41463730793298298041665385308325,447814224393522724673729884056814834500,24479424309393636290695101063892553945412075000

%N 3-enumeration of 2n+1 X 2n+1 vertically symmetric alternating-sign matrices.

%H Harry J. Smith, <a href="/A059486/b059486.txt">Table of n, a(n) for n = 0..53</a>

%H G. Kuperberg, <a href="https://arxiv.org/abs/math/0008184">Symmetry classes of alternating-sign matrices under one roof</a>, arXiv:math/0008184 [math.CO], 2000-2001. [Th. 3, but the formula there is incorrect]

%H J. Propp, <a href="http://www.dmtcs.org/pdfpapers/dmAA0103.pdf">The many faces of alternating-sign matrices</a>, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 43-58.

%F a(n) ~ exp(1/36) * Gamma(1/3)^(1/3) * 3^(n*(4*n + 1)/2 + 11/36) * n^(1/36) / (2^(2*n*(n+1) + 7/12) * A^(1/3) * Pi^(1/6)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Feb 24 2019

%p A059486 := proc(n) local i, j, t1; t1 := 3^(2*n^2)/2^(2*n^2 + n); for i to 2*n + 1 do for j to 2*n + 1 do if i mod 2 <> 0 and j mod 2 = 0 then t1 := t1*(3*j - 3*i + 1)/(3*j - 3*i) end if end do end do; t1 end proc;

%p e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } # _Harry J. Smith_, Jun 27 2009

%t a[n_] := Module[{i, j, t1}, t1 = 3^(2*n^2)/2^(2*n^2 + n); For[i = 1, i <= 2*n + 1, i++, For[j = 1, j <= 2*n + 1, j++, If[Mod[i, 2] != 0 && Mod[j, 2] == 0, t1 = t1*(3*j - 3*i + 1)/(3*j - 3*i)]]]; t1];

%t Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Nov 23 2017, translated from Maple *)

%t Table[3^(2*n^2)/2^(2*n^2 + n) * Product[(2 + 6*i - 6*j)/(3 + 6*i - 6*j), {i, 0, n}, {j, 1, n}], {n, 0, 15}] (* _Vaclav Kotesovec_, Feb 24 2019 *)

%o (PARI) a(n)=local(A); if(n<0,0,A=Vec((1-(1-9*x+O(x^(2*n+1)))^(1/3))/(3*x)); matdet(matrix(n,n,i,j,A[i+j]))/3^n)

%o (PARI) e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } \\ _Harry J. Smith_, Jun 27 2009

%Y Cf. A025748, A227379.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Feb 04 2001