login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of square root of (Pi * e / 2).
4

%I #29 Nov 27 2024 11:54:03

%S 2,0,6,6,3,6,5,6,7,7,0,6,1,2,4,6,4,6,9,2,3,4,6,9,5,9,4,2,1,4,9,9,2,6,

%T 3,2,4,7,2,2,7,6,0,9,5,8,4,9,5,6,5,4,2,2,5,7,7,8,3,2,5,6,2,6,8,9,8,9,

%U 7,8,9,6,4,2,5,6,7,0,8,5,1,6,1,8,1,2,6,0,1,8,1,2,2,7,7,3,3,1,4,1

%N Decimal expansion of square root of (Pi * e / 2).

%C Appears as constant factor in Proposition 1.12, p. 5, of Feige et al. (2007). - _Jonathan Vos Post_, Jun 18 2007

%D C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, Oxford and NY, 2001, page 68.

%H Harry J. Smith, <a href="/A059444/b059444.txt">Table of n, a(n) for n = 1..20000</a>

%H C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.00008&amp;format=complete">Zentralblatt review</a>

%H Uri Feige, Guy Kindler, Ryan O Donnell, <a href="http://eccc.hpi-web.de/eccc-reports/2007/TR07-043/Paper.pdf">Understanding Parallel Repetition Requires Understanding Foams</a>, Electronic Colloquium on Computational Complexity, Report TR07-043 (ISSN 1433-8092, 14th Year, 43rd Report), 7 May 2007.

%H OEIS Wiki, <a href="/wiki/A_remarkable_formula_of_Ramanujan">A remarkable formula of Ramanujan</a>

%F Sqrt(Pi*e/2) = A + B with A = 1 + 1/(1*3) + 1/(1*3*5) + 1/(1*3*5*7) + 1/(1*3*5*7*9) + ... = 1.410686134... (see A060196) and B = 1/(1 + 1/(1 + 2/(1 + 3/(1 + 4/(1 + 5/(1 + ...)))))) = 0.65567954241... (see A108088) - (S. Ramanujan)

%F Equals (sqrt(2)*exp(1/4)*(sum(n>=0, n!/(2*n)! ) - 1))/erf(1/2). - _Jean-François Alcover_, Mar 22 2013

%e 2.066365677...

%t RealDigits[N[Sqrt[ \[Pi]*\[ExponentialE]/2], 100]][[1]]

%t RealDigits[Sqrt[(Pi*E)/2],10,120][[1]] (* _Harvey P. Dale_, Nov 27 2024 *)

%o (PARI) { default(realprecision, 20080); x=sqrt(Pi*exp(1)/2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b059444.txt", n, " ", d)); } \\ _Harry J. Smith_, Jun 27 2009

%Y Cf. A059445, A060196, A108088.

%K nonn,cons

%O 1,1

%A _Robert G. Wilson v_, Feb 01 2001

%E Edited by _Daniel Forgues_, Apr 14 2011