login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059357
A diagonal of triangle in A008298.
4
1, 18, 215, 2475, 28294, 340116, 4335596, 57773700, 831170736, 12532005288, 201002619168, 3401283910752, 60929911689984, 1143429812726400, 22572470529457920, 468013463441475840, 10124124979606179840
OFFSET
3,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
LINKS
FORMULA
a(n) = (n!/6) * Sum_{i,j,k > 0 and i+j+k=n} sigma(i)*sigma(j)*sigma(k)/(i*j*k). - Seiichi Manyama, Nov 09 2020.
E.g.f.: -(1/6) * log( Product_{k>=1} (1 - x^k) )^3. - Ilya Gutkovskiy, Apr 24 2021
MATHEMATICA
nmax = 20; Table[n!/6 * Sum[Sum[Sum[If[i + j + k == n, DivisorSigma[1, i] * DivisorSigma[1, j] * DivisorSigma[1, k] / (i*j*k), 0], {k, 1, n}], {j, 1, n}], {i, 1, n}], {n, 3, nmax}] (* Vaclav Kotesovec, Nov 09 2020 *)
PROG
(PARI) {a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-t)), n), 3)} \\ Seiichi Manyama, Nov 07 2020
CROSSREFS
Cf. A008298.
Sequence in context: A260569 A125430 A021764 * A324638 A009470 A111991
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 27 2001
EXTENSIONS
More terms from Vladeta Jovovic, Dec 28 2001
STATUS
approved