login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.
21

%I #97 Sep 08 2022 08:45:02

%S 1,0,1,0,2,1,0,3,6,1,0,4,24,12,1,0,5,80,90,20,1,0,6,240,540,240,30,1,

%T 0,7,672,2835,2240,525,42,1,0,8,1792,13608,17920,7000,1008,56,1,0,9,

%U 4608,61236,129024,78750,18144,1764,72,1,0,10,11520,262440

%N Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.

%C T(n,k) = C(n,k)*k^(n-k) is the number of functions f from domain [n] to codomain [n+1] such that f(x)=n+1 for exactly k elements x of [n] and f(f(x))=n+1 for the remaining n-k elements x of [n]. Subsequently, row sums of T(n,k) provide the number of functions f:[n]->[n+1] such that either f(x)=n+1 or f(f(x))=n+1 for every x in [n]. We note that there are C(n,k) ways to choose the k elements mapped to n+1 and there are k^(n-k) ways to map n-k elements to a set of k elements. - _Dennis P. Walsh_, Sep 05 2012

%C Conjecture: the matrix inverse is A137452. - _R. J. Mathar_, Mar 12 2013

%C The above conjecture is correct. This triangle is the exponential Riordan array [1, x*exp(x)]. Thus the inverse array is the exponential Riordan array [ 1, W(x)], which equals A137452. - _Peter Bala_, Apr 08 2013

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

%H Alois P. Heinz, <a href="/A059297/b059297.txt">Rows n = 0..140, flattened</a>

%H Peter Bala, <a href="/A112007/a112007_Bala.txt">Diagonals of triangles with generating function exp(t*F(x)).</a>

%H G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, <a href="http://arXiv.org/abs/quant-ph/0401126">One-parameter groups and combinatorial physics</a>, arXiv:quant-ph/0401126, 2004.

%H Emanuele Munarini, <a href="https://doi.org/10.2298/AADM180226017M">Combinatorial identities involving the central coefficients of a Sheffer matrix</a>, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.

%H Bruce E. Sagan, <a href="http://deepblue.lib.umich.edu/bitstream/2027.42/25401/1/0000850.pdf">A note on Abel polynomials and rooted labeled forests</a>. Discrete Mathematics 44(3): 293-298 (1983).

%H J. Taylor, <a href="https://digital.lib.washington.edu/researchworks/handle/1773/36757">Formal group laws and hypergraph colorings</a>, doctoral thesis, Univ. of Wash., 2016, p. 96, [_Tom Copeland_, Dec 20 2018].

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AbelPolynomial.html">Abel Polynomial</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IdempotentNumber.html">Idempotent Number</a>

%H Jian Zhou, <a href="https://arxiv.org/abs/2108.10514">On Some Mathematics Related to the Interpolating Statistics</a>, arXiv:2108.10514 [math-ph], 2021.

%F E.g.f.: exp(x*y*exp(y)). - _Vladeta Jovovic_, Nov 18 2003

%F Up to signs, this is the triangle of connection constants expressing the monomials x^n as a linear combination of the Abel polynomials A(k,x) := x*(x+k)^(k-1), 0 <= k <= n. O.g.f. for the k-th column: A(-k,1/x) = x^k/(1-k*x)^(k+1). Cf. A061356. Examples are given below. - _Peter Bala_, Oct 09 2011

%F The o.g.f.'s for the diagonals of this triangle are the rational functions occurring in the expansion of the compositional inverse (with respect to x) (x-t*x*exp(x))^-1 = x/(1-t) + 2*t/(1-t)^3*x^2/2! + (3*t+9*t^2)/(1-t)^5*x^3/3! + (4*t+52*t^2+64*t^3)/(1-t)^7*x^4/4! + .... For example, the o.g.f. for second subdiagonal is (3*t+9*t^2)/(1-t)^5 = 3*t + 24*t^2 + 90*t^3 + 240*t^4 + .... See the Bala link. The coefficients of the numerator polynomials are listed in A202017. - _Peter Bala_, Dec 08 2011

%F Recurrence equation: T(n+1,k+1) = Sum_{j=0..n-k} (j+1)*binomial(n,j)*T(n-j,k). - _Peter Bala_, Jan 13 2015

%F The Bell transform of [1,2,3,...]. See A264428 for the Bell transform. - _Peter Luschny_, Dec 20 2015

%e Triangle begins:

%e 1;

%e 0, 1;

%e 0, 2, 1;

%e 0, 3, 6, 1;

%e 0, 4, 24, 12, 1;

%e 0, 5, 80, 90, 20, 1;

%e 0, 6, 240, 540, 240, 30, 1;

%e 0, 7, 672, 2835, 2240, 525, 42, 1;

%e Row 4. Expansion of x^4 in terms of Abel polynomials:

%e x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.

%e O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....

%p T:= (n, k)-> binomial(n, k) *k^(n-k):

%p seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Sep 05 2012

%t nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid (* _Geoffrey Critzer_, Feb 09 2013 *)

%t t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* _Arkadiusz Wesolowski_, Mar 23 2013 *)

%o (Magma) /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Aug 22 2015

%o (Sage) # uses[bell_transform from A264428]

%o def A059297_row(n):

%o nat = [k for k in (1..n)]

%o return bell_transform(n, nat)

%o [A059297_row(n) for n in range(8)] # _Peter Luschny_, Dec 20 2015

%Y There are 4 versions: A059297, A059298, A059299, A059300.

%Y Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.

%Y Row sums are A000248.

%Y Cf. A061356, A202017, A137452 (inverse array), A264428.

%K nonn,easy,tabl

%O 0,5

%A _N. J. A. Sloane_, Jan 25 2001