Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 11 2013 04:31:00
%S 1,0,1,0,2,3,0,2,8,11,0,2,14,36,47,0,2,20,78,172,219,0,2,26,138,424,
%T 862,1081,0,2,32,216,856,2314,4476,5557,0,2,38,312,1522,5116,12768,
%U 23882,29439,0,2,44,426,2476,9970,30168,71294,130172,159611,0,2,50,558
%N Triangle T(n,k) (0<= k <=n) read by rows. Left edge is 1, 0, 0, ... Otherwise each entry is sum of entry to left, entries immediately above it to left and right and entry directly above it 2 rows back.
%H Reinhard Zumkeller, <a href="/A059283/b059283.txt">Rows n = 0..120 of triangle, flattened</a>
%F T(0, 0)=1; T(n, 0)=0, n>0; T(n, k)=T(n, k-1)+T(n-1, k-1)+T(n-1, k)+T(n-2, k-1), n, k>0
%F G.f. for T(n, k): ((1+2*w+w^2)*z^2+(-1-2*w-w^2)*z-w*(-3*w^2-6*w+1)^(1/2)+2*w)/(1+w)^2/((1+w)*z^2+(w-1)*z+w) (expand first as series in z, then in w).
%e 1; 0,1; 0,2,3; 0,2,8,11; 0,2,14,36,47; ... [36 = 14 + 8 + 11 + 3 for example].
%t t[0, 0] = 1; t[_, 0] = 0; t[n_, k_] /; 0 <= k <= n := t[n, k] = t[n, k-1] + t[n-1, k-1] + t[n-1, k] + t[n-2, k-1]; t[_, _] = 0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 11 2013 *)
%o (Haskell)
%o a059283 n k = a059283_tabl !! n !! k
%o a059283_row n = a059283_tabl !! n
%o a059283_tabl = [1] : [0,1] : f [1] [0,1] where
%o f us vs = ws : f vs ws where
%o ws = scanl1 (+) $ zipWith (+)
%o ([0]++us++[0]) $ zipWith (+) ([0]++vs) (vs++[0])
%o -- _Reinhard Zumkeller_, Apr 17 2013
%Y Right edge is A059284. Cf. A059226.
%Y Cf. A224729 (central terms), A122542.
%K nonn,tabl,easy,nice
%O 0,5
%A _N. J. A. Sloane_, Jan 24 2001
%E More terms from Larry Reeves (larryr(AT)acm.org), Jan 25 2001