login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of coefficients of asymptotic expansion related to iterated sine function.
2

%I #10 Jan 03 2017 02:40:03

%S 1,1,3,2,3,18,1382,12,32553,87734,1047666,2796588,1418184546,23685516,

%T 366420255876,13785346041608,23127963123651,2729316555918,

%U 52630543106106954746,1850522471899932,4699488932936084196918,18241171727016849632292,91090700441348806587348

%N Numerators of coefficients of asymptotic expansion related to iterated sine function.

%D N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland, 3rd. ed., 1970; see p. 158, (8.6.4).

%H G. C. Greubel, <a href="/A059239/b059239.txt">Table of n, a(n) for n = 0..314</a>

%F a(n) = numerator ( (1-2*n)*(-12)^n*Bernoulli(2*n)/(2*n)! ).

%e 1, 1, 3/5, 2/7, 3/25, 18/385, 1382/79625, 12/1925, 32553/14889875, 87734/116491375, 1047666/4094715625, 2796588/32534376875 = A059239/A059240.

%p a:= n-> numer((1-2*n)*(-12)^n*bernoulli(2*n)/(2*n)!): seq (a(n), n=0..30);

%t Numerator[Table[(1 - 2*n)*(-12)^n*BernoulliB[2*n]/(2*n)!, {n,0,25}]] (* _G. C. Greubel_, Jan 02 2017 *)

%Y Cf. A059240.

%K nonn,easy,frac

%O 0,3

%A _N. J. A. Sloane_, Jan 21 2001