login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least number k such that k^n reversed is a prime.
2

%I #9 Jul 16 2023 08:39:30

%S 2,4,5,2,2,16,2,8,32,2,17,4,25,28,8,53,2,25,79,95,47,46,28,2,19,5,85,

%T 86,541,32,104,314,25,115,4,5,2,25,67,71,142,226,5,53,2,304,14,106,85,

%U 8,238,128,185,23,2,65,565,122,136,668,23,37,28,1117,178,5,74

%N Least number k such that k^n reversed is a prime.

%C a(2) = 2 since 1^2, 2^2, 3^2 and 4^2 reversed are 1, 4, 9 and 61 and 61 is the first prime.

%C a(3) = 5 since 1^3, 2^3, 3^3, 4^3, and 5^3 reversed are 1, 8, 72, 46 and 521 and 521 is the first prime.

%H Michael S. Branicky, <a href="/A059215/b059215.txt">Table of n, a(n) for n = 1..1000</a>

%t Do[ k = 2; While[ ! PrimeQ[ ToExpression[ StringReverse[ ToString[ k^n ] ] ] ], k++ ]; Print[ k ], {n, 1, 50} ]

%t lnk[n_]:=Module[{k=1},While[!PrimeQ[IntegerReverse[k^n]],k++];k]; Array[ lnk,50] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 20 2021 *)

%o (Python)

%o from itertools import count

%o from gmpy2 import digits, is_prime

%o def a(n): return next(k for k in count(2) if is_prime(int(digits(k**n)[::-1])))

%o print([a(n) for n in range(1, 68)]) # _Michael S. Branicky_, Jul 16 2023

%Y Cf. A004086.

%K nonn,base

%O 1,1

%A _Robert G. Wilson v_, Jan 16 2001

%E a(51) and beyond from _Michael S. Branicky_, Jul 16 2023