Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Jan 29 2023 19:19:54
%S 0,0,0,0,0,20580,9106440,1058272828,56671435220,1819138009252,
%T 40526220292026,685404291322800,9333711208757096,106588763704012184,
%U 1051025434717631806,9144977489478933912,71381946761468630363
%N Number of 7-element ordered T_0-antichains on an unlabeled n-set; T_1-hypergraphs on 7 labeled nodes with n (not necessarily empty) distinct hyperedges (n=0,1,...,128).
%C An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v.
%D V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
%D V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
%H Sean A. Irvine, <a href="/A059050/b059050.txt">Table of n, a(n) for n = 0..128</a>
%F a(n)=C(128, n) - 42*C(96, n) + 210*C(80, n) + 140*C(72, n) + 210*C(68, n) - 84*C(66, n) + 14 *C(65, n) - 819*C(64, n) - 2520*C(60, n) + 2730*C(56, n) + 840*C(54, n) + 840*C(52, n) - 420*C(51, n) + 2940*C(50, n) + 630*C(48, n) - 5040*C(46, n) + 840*C(45, n) - 1260*C(44, n) + 1680*C(43, n) - 9660*C(42, n) + 1260*C(41, n) + 3360*C(40, n) - 7560*C(39, n) + 11130*C(38, n) + 5880*C(37, n) + 9240*C(36, n) + 2982*C(35, n) - 6300*C(34, n) - 8652 *C(33, n) - 9905*C(32, n) - 8400*C(31, n) - 8540*C(30, n) + 13860*C(29, n) + 14490 *C( 28, n) - 5040*C(27, n) + 10500*C(26, n) + 10080*C(25, n) - 8120*C(24, n) - 15050*C(23, n) - 5040*C(22, n) - 11340*C(21, n) + 20580*C(20, n) + 15750*C(19, n) - 1540*C(18, n) - 5810*C(17, n) - 16485*C(16, n) - 21420*C(15, n) + 26250*C(14, n) + 21000*C(13, n) - 29820*C(12, n) + 3500*C(11, n) + 17640*C(10, n) + 2940*C(9, n) - 16016*C(8, n) + 4410*C(7, n) - 9744*C(6, n) + 9744*C(5, n) + 1764*C(4, n) - 3528*C(3, n) + 720*C(2, n).
%Y Cf. A059048, A059049, A059051, A059052.
%K fini,full,nonn
%O 0,6
%A _Vladeta Jovovic_, Goran Kilibarda, Dec 19 2000