login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of Stirling numbers of order 5.
6

%I #27 Apr 08 2022 21:02:35

%S 1,1,1,1,1,1,126,1,462,1,1254,1,3003,1,6721,1,14443,126126,1,30251,

%T 1009008,1,62322,5309304,1,127024,23075052,1,257108,89791416,1,518092,

%U 325355316,488864376,1,1041029,1122632043,6844101264,1,2088043

%N Triangle of Stirling numbers of order 5.

%C The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 5. This is the 5-associated Stirling number of the second kind.

%C This is entered as a triangular array. The entries S_5(n,k) are zero for 5k>n, so these values are omitted. Initial entry in sequence is S_5(5,1).

%C Rows are of lengths 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,...

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

%H Alois P. Heinz, <a href="/A059024/b059024.txt">Rows n = 5..320, flattened</a>

%H A. E. Fekete, <a href="http://www.jstor.org/stable/2974533">Apropos two notes on notation</a>, Amer. Math. Monthly, 101 (1994), 771-778.

%F S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=5.

%F G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).

%F T(n,k) = Sum_{j=0..min(n/4,k)} (-1)^j*n!/(24^j*j!*(n-4j)!)*S_4(n-4j,k-j), where S_4 are the 4-associated Stirling numbers of the second kind A059023. - _Fabián Pereyra_, Feb 21 2022

%e There are 126 ways of partitioning a set N of cardinality 10 into 2 blocks each of cardinality at least 5, so S_5(10,2) = 126.

%e Triangle begins:

%e 1;

%e 1;

%e 1;

%e 1;

%e 1;

%e 1, 126;

%e 1, 462;

%e 1, 1254;

%e 1, 3003;

%e 1, 6721;

%e 1, 14443, 126126;

%e 1, 30251, 1009008;

%e 1, 62322, 5309304;

%e 1, 127024, 23075052;

%e 1, 257108, 89791416;

%e 1, 518092, 325355316, 488864376;

%e ...

%p T:= proc(n,k) option remember; `if`(k<1 or k>n/5, 0,

%p `if`(k=1, 1, k*T(n-1, k)+binomial(n-1, 4)*T(n-5, k-1)))

%p end:

%p seq(seq(T(n, k), k=1..n/5), n=5..25); # _Alois P. Heinz_, Aug 18 2017

%t S5[n_ /; 5 <= n <= 9, 1] = 1; S5[n_, k_] /; 1 <= k <= Floor[n/5] := S5[n, k] = k*S5[n-1, k] + Binomial[n-1, 4]*S5[n-5, k-1]; S5[_, _] = 0; Flatten[ Table[ S5[n, k], {n, 5, 25}, {k, 1, Floor[n/5]}]] (* _Jean-François Alcover_, Feb 21 2012 *)

%Y Row sums give A057814.

%Y Cf. A008299, A059022, A059023, A059025.

%K nonn,tabf,nice

%O 5,7

%A Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000