login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058956
Let S(t) = 1 + s_1*t + s_2*t^2 + ... satisfy S' = -S/(2 + S); sequence gives denominators of s_n.
1
1, 3, 27, 1, 4374, 98415, 885735, 3720087, 55801305, 1291401630, 813583026900, 4027235983155, 724902476967900, 7710326345931300, 5343256157730390900, 52845390570959910, 5770716650348822172000, 441459823751684896158000
OFFSET
0,2
FORMULA
S(t) = 2*LambertW((1/2)*exp(-(1/2)*t)*exp(1/2)).
EXAMPLE
S(t) = 1-1/3*t+1/27*t^2-1/4374*t^4-1/98415*t^5+...
MATHEMATICA
m = 17; S[t_] = Sum[s[k] t^k, {k, 0, m}]; s[0] = 1;
sol = Solve[Thread[CoefficientList[S'[t] + S[t]/(2+S[t])+O[t]^m, t] == 0]];
s /@ Range[0, m] /. sol[[1]] // Denominator (* Jean-François Alcover, Oct 01 2019 *)
CROSSREFS
Cf. A058955.
Sequence in context: A378063 A219895 A088730 * A010257 A334567 A284863
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 13 2001
STATUS
approved