Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 17 2018 11:38:06
%S 0,1,60,0,0,19958400,0,0,622452999168000,0,0,258520167388849766400000,
%T 0,0,675289572271869736778268672000000,0,0,
%U 7393367369949286697176489031997849600000000,0,0
%N Number of 3-connected claw-free cubic graphs with 2n nodes.
%D G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.
%H G.-B. Chae, <a href="/A058931/b058931.txt">Table of n, a(n) for n = 1..47</a>
%H G.-B. Chae, <a href="http://myhome.hanafos.com/~1234chae/myindex.htm">Home page</a>
%H G.-B. Chae, <a href="https://doi.org/10.1016/j.disc.2007.09.034">Counting labeled claw-free cubic graphs by connectivity</a>, Discrete Mathematics 308 (2008) 5136-5143.
%H G.-B. Chae, E. M. Palmer and R. W. Robinson, <a href="/A058929/a058929.pdf">Computing the number of Claw-free Cubic Graphs with given Connectivity</a>, Preprint, 2000. (Annotated scanned copy)
%Y See A058930 for many more terms.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, Jan 12 2001
%E Added b-file, _N. J. A. Sloane_, Feb 08 2012