|
|
A058930
|
|
Number of 3-connected claw-free cubic graphs with 6n nodes.
|
|
3
|
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.
|
|
LINKS
|
G.-B. Chae, Table of n, a(n) for n = 0..15
G.-B. Chae, Home page
G.-B. Chae, Counting labeled claw-free cubic graphs by connectivity, Discrete Mathematics 308 (2008) 5136-5143.
G.-B. Chae, E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, Preprint, 2000. (Annotated scanned copy)
|
|
CROSSREFS
|
Cf. A058931.
Sequence in context: A003921 A003928 A065247 * A333523 A249909 A241601
Adjacent sequences: A058927 A058928 A058929 * A058931 A058932 A058933
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jan 12 2001
|
|
STATUS
|
approved
|
|
|
|