Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 May 19 2023 18:49:43
%S -1,0,0,1,2,5,8,15,23,37,55,83,118,171,238,332,453,618,827,1107,1460,
%T 1922,2504,3253,4188,5380,6860,8722,11024,13895,17421,21787,27122,
%U 33677,41653,51390,63179,77496,94755,115600,140632,170725,206717,249804,301151,362367,435077,521439,623674,744695
%N Partial sums of the partition function (A000041), with the last term subtracted. Also the sum of the row of the character table for S_n corresponding to the partition n-1,1 for n>1. Also the sum over all partitions lambda of n of one less than the number of 1's in lambda.
%C For n>=1 number of up-steps in all partitions of n (represented as weakly increasing lists), see example. - _Joerg Arndt_, Sep 03 2014
%H Andrew Howroyd, <a href="/A058884/b058884.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Archibald/arch3.html">Inversions and Parity in Compositions of Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
%H Anders Claesson, Atli Fannar Franklín, and Einar Steingrímsson, <a href="https://arxiv.org/abs/2305.09457">Permutations with few inversions</a>, arXiv:2305.09457 [math.CO], 2023.
%H S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, <a href="https://www.researchgate.net/publication/228671252_Inversions_in_compositions_of_integers">Inversions in Compositions of Integers</a>, Quaestiones Mathematicae 34 (2011), 187-202.
%F From _Andrew Howroyd_, Apr 21 2023: (Start)
%F a(n) = A000070(n-1) - A000041(n) for n > 0.
%F G.f.: (2*x - 1)*P(x)/(1 - x) where P(x) is the g.f. of A000041. (End)
%e a(6) = 8 because the 11 partitions of 6
%e 01: [ 1 1 1 1 1 1 ]
%e 02: [ 1 1 1 1 2 ]
%e 03: [ 1 1 1 3 ]
%e 04: [ 1 1 2 2 ]
%e 05: [ 1 1 4 ]
%e 06: [ 1 2 3 ]
%e 07: [ 1 5 ]
%e 08: [ 2 2 2 ]
%e 09: [ 2 4 ]
%e 10: [ 3 3 ]
%e 11: [ 6 ]
%e contain 0+1+1+1+1+2+1+0+1+0+0 = 8 up-steps. - _Joerg Arndt_, Sep 03 2014
%p a:= proc(n) uses combinat; add(numbpart(k), k=0..n-1)-numbpart(n) end:
%p seq(a(n), n=0..49);
%t p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; Table[Count[Flatten[p[n]], 1] - l[n], {n, 0, 30}] (* _Clark Kimberling_, Mar 08 2012 *)
%o (PARI) a(n) = {sum(k=0, n-1, numbpart(k)) - numbpart(n)} \\ _Andrew Howroyd_, Apr 21 2023
%o (PARI) Vec((2*x - 1)/(1 - x)/eta(x + O(x^51))) \\ _Andrew Howroyd_, Apr 21 2023
%Y Cf. A000041, A000070.
%Y Cf. A218074 (up-steps in partitions into distinct parts).
%K sign,easy
%O 0,5
%A _Edward Early_, Jan 08 2001
%E More terms from _James A. Sellers_, Sep 28 2001