Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Dec 27 2021 23:45:44
%S 1,1,2,1,9,15,1,28,198,316,1,75,1610,10710,16885,1,186,10575,211820,
%T 1384335,2174586,1,441,61845,3268125,64144675,416990763,654313415,1,
%U 1016,336924,43832264,2266772550,44218682312,286992935964,450179768312
%N Triangle read by rows: T(n,k) = number of labeled acyclic digraphs with n nodes, containing exactly n+1-k points of in-degree zero (n >= 1, 1<=k<=n).
%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
%D R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
%H Andrew Howroyd, <a href="/A058876/b058876.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%H R. W. Robinson, <a href="/A003024/a003024.pdf">Enumeration of acyclic digraphs</a>, Manuscript. (Annotated scanned copy)
%F Harary and Prins (following Robinson) give a recurrence.
%e Triangle begins:
%e 1;
%e 1, 2;
%e 1, 9, 15;
%e 1, 28, 198, 316;
%e 1, 75, 1610, 10710, 16885;
%e ...
%t a[p_, k_] :=a[p, k] =If[p == k, 1, Sum[Binomial[p, k]*a[p - k, n]*(2^k - 1)^n*2^(k (p - k - n)), {n,1, p - k}]];
%t Map[Reverse, Table[Table[a[p, k], {k, 1, p}], {p, 1, 6}]] // Grid (* _Geoffrey Critzer_, Aug 29 2016 *)
%o (PARI)
%o A058876(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, 2^(i*(#u-j))*(2^i-1)^j*binomial(n,i)*u[j])))); v}
%o { my(T=A058876(10)); for(n=1, #T, print(Vecrev(T[n]))) } \\ _Andrew Howroyd_, Dec 27 2021
%Y Columns give A058877, A060337.
%Y Diagonals give A003025, A003026, A060335.
%Y Row sums give A003024.
%Y Cf. A122078 (unlabeled case).
%K nonn,easy,tabl
%O 1,3
%A _N. J. A. Sloane_, Jan 07 2001
%E More terms from _Vladeta Jovovic_, Apr 10 2001