%I #11 Sep 02 2022 19:17:46
%S 1,2,6,21,83,356,1599,7434,35381,171508,843419,4197179,21094355,
%T 106915928,545859112,2804656069,14491370996,75248398034,392476363133,
%U 2055245992376,10801442696736,56953957110855,301207378815752
%N Number of 2-trees rooted at an edge.
%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.11).
%F H. and P. give g.f.
%Y Let A063687(n) be the number of 2-trees rooted at a symmetric edge (see H. and P. Eq. (3.5.9)). Then A058866(n) = A058870(n) + A063687(n).
%Y Cf. A058870, A054581.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, Jan 06 2001
%E More terms from _Vladeta Jovovic_, Aug 22 2001