login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

From Renyi's "beta expansion of 1 in base 3/2": sequence gives lengths of runs of 0's in A058840.
3

%I #13 Dec 21 2018 10:30:21

%S 0,1,5,2,2,1,9,6,4,6,2,2,1,11,3,2,7,2,5,4,6,3,3,5,2,4,7,7,2,5,3,4,2,3,

%T 5,5,2,2,2,2,4,3,10,5,5,2,1,6,1,5,2,3,2,3,3,2,9,6,9,6,8,2,7,5,3,2,2,4,

%U 3,1,14,9,3,6,7,3,2,2,3,4,3,2,6,4,2

%N From Renyi's "beta expansion of 1 in base 3/2": sequence gives lengths of runs of 0's in A058840.

%D A. Renyi (1957), Representation for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hung., 8, 477-493.

%H Reinhard Zumkeller, <a href="/A058841/b058841.txt">Table of n, a(n) for n = 0..1000</a>

%t nmax = 500; r = 3/2; x = 1; (* b = A058840 *) b[0] = b[1] = 1;

%t For[n=2, n <= nmax, n++, x = If[r x > 1, r x - 1, r x]; b[n] = Floor[r x]];

%t Join[{0}, Length /@ Select[Split[Table[b[n], {n, 0, nmax}]], #[[1]] == 0&]] (* _Jean-François Alcover_, Dec 21 2018, using _Benoit Cloitre_'s code for A058840 *)

%o (Haskell)

%o import Data.List (group)

%o a058841 n = a058841_list !! n

%o a058841_list =

%o 0 : (map length $ filter ((== 0) . head) $ group a058840_list)

%o -- _Reinhard Zumkeller_, Jul 01 2011

%Y Cf. A058840, A058842.

%K nonn,nice,easy

%O 0,3

%A Claude Lenormand (claude.lenormand(AT)free.fr), Jan 05 2001

%E More terms from Larry Reeves (larryr(AT)acm.org), Feb 22 2001

%E Data corrected for n>33 by _Reinhard Zumkeller_, Jul 01 2011