login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058808
Product{k=1 to n}[S(n,k)], where S(n,k) is a Stirling number of the second kind. (S(n,k) = number of ways of partitioning a set of n elements into k nonempty subsets.)
5
1, 1, 3, 42, 3750, 2720250, 19512927000, 1631977354072800, 1833446251541145780000, 31323109023670061678062500000, 9087660958278168844264470405352500000
OFFSET
1,3
LINKS
FORMULA
log(a(n)) ~ n^2 * (log(n) + gamma - 3/2) / 2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 27 2021
EXAMPLE
a(4) = S(4,1)*S(4,2)*S(4,3)*S(4,4) = 1*7*6*1 = 42.
MAPLE
a:=n->mul(stirling2(n, k), k=1..n): seq(a(n), n=1..12); # Zerinvary Lajos, Jun 28 2007
MATHEMATICA
Table[Product[StirlingS2[n, k], {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Feb 26 2021 *)
PROG
(PARI) a(n) = prod(k=1, n, stirling(n, k, 2)); \\ Michel Marcus, Dec 12 2015
CROSSREFS
Sequence in context: A145984 A213956 A157552 * A155210 A157572 A332973
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Jan 02 2001
STATUS
approved