login
McKay-Thompson series of class 55A for the Monster group.
1

%I #17 Jul 10 2018 09:47:17

%S 1,0,2,1,1,2,3,4,6,5,8,9,12,14,15,18,23,28,32,35,45,50,61,69,79,90,

%T 106,122,142,156,184,206,242,269,304,346,391,442,502,556,634,707,801,

%U 892,999,1114,1249,1392,1555,1718,1927,2129,2380,2630,2914,3226,3577

%N McKay-Thompson series of class 55A for the Monster group.

%H Vaclav Kotesovec, <a href="/A058713/b058713.txt">Table of n, a(n) for n = -1..3200</a> (computed by David A. Madore)

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H David A. Madore, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&amp;threadID=1602206&amp;messageID=5836094">Coefficients of Moonshine (McKay-Thompson) series</a>, The Math Forum

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F a(n) ~ exp(4*Pi*sqrt(n/55)) / (sqrt(2) * 55^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 10 2018

%e T55A = 1/q + 2*q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 6*q^7 + 5*q^8 + 8*q^9 + ...

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K nonn

%O -1,3

%A _N. J. A. Sloane_, Nov 27 2000

%E More terms from _Michel Marcus_, Feb 24 2014