login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 45A for Monster.
2

%I #19 Jun 26 2018 08:43:08

%S 1,0,2,1,3,4,5,6,7,11,15,17,22,24,34,40,48,56,69,84,104,118,144,164,

%T 200,234,273,318,372,436,511,582,681,775,906,1036,1192,1362,1562,1784,

%U 2046,2315,2647,2988,3409,3860,4371,4936,5573,6288,7104,7967,8979,10052

%N McKay-Thompson series of class 45A for Monster.

%H G. C. Greubel, <a href="/A058684/b058684.txt">Table of n, a(n) for n = -1..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of -1 + (eta(q^3)*eta(q^15))^2/(eta(q)*eta(q^5)*eta(q^9)* eta(q^45)) in powers of q. - _G. C. Greubel_, Jun 19 2018

%F a(n) ~ exp(4*Pi*sqrt(n/5)/3) / (5^(1/4) * sqrt(6) * n^(3/4)). - _Vaclav Kotesovec_, Jun 26 2018

%e T45A = 1/q + 2*q + q^2 + 3*q^3 + 4*q^4 + 5*q^5 + 6*q^6 + 7*q^7 + 11*q^8 + ...

%t eta[q_]:= q^(1/24)*QPochhammer[q]; A:= (eta[q^3]*eta[q^15])^2/(eta[q] *eta[q^5]*eta[q^9]*eta[q^45]); a:= CoefficientList[Series[-1 + e45A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 19 2018 *)

%o (PARI) q='q+O('q^50); A = -1 + (eta(q^3)*eta(q^15))^2/(eta(q)*eta(q^5) *eta(q^9)*eta(q^45))/q; Vec(A) \\ _G. C. Greubel_, Jun 19 2018

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%Y Cf. A226054 (same sequence except for n=0).

%K nonn

%O -1,3

%A _N. J. A. Sloane_, Nov 27 2000

%E More terms from _Michel Marcus_, Feb 18 2014