login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 35a for Monster.
0

%I #27 Jan 22 2023 09:36:46

%S 1,0,1,-1,1,1,0,0,-1,2,2,0,1,-2,1,3,0,1,-2,3,5,0,2,-3,3,6,0,2,-5,5,8,

%T 0,5,-7,6,12,0,5,-8,10,16,0,7,-12,13,21,0,9,-15,16,28,0,12,-20,21,36,

%U 0,14,-25,27,46,0,20,-34,34,58,0,24,-41,44,75,0,33,-54

%N McKay-Thompson series of class 35a for Monster.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (175 t)) = f(t) where q = exp(2 Pi i t). - _Michael Somos_, Jan 22 2023

%F Expansion of ( eta(q^35)^2 *(eta(q)^2 + 5*eta(q^25)^2) - eta(q^5)^2 *(5*eta(q^175)^2 +eta(q^7)^2) + eta(q)*eta(q^35)*(5*eta(q^25)*eta(q^35) + eta(q^5)*eta(q^7)) - 5*eta(q^5)*eta(q^175)*(eta(q^25)*eta(q^35) +eta(q^5)*eta(q^7)) )/(eta(q^5)*eta(q^35)*(5*eta(q^25)*eta(q^175) - eta(q)*eta(q^7)) in powers of q. - _Michael Somos_, Jan 22 2023

%e T35a = 1/q + q - q^2 + q^3 + q^4 - q^7 + 2*q^8 + 2*q^9 + q^11 - 2*q^12 + ...

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K sign

%O -1,10

%A _N. J. A. Sloane_, Nov 27 2000

%E More terms from _Georg Fischer_ using a PARI program of _Michael Somos_, Jan 21 2023