login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 30E for Monster.
1

%I #20 Jun 28 2018 03:44:58

%S 1,2,3,6,9,12,18,26,34,48,66,86,115,152,196,252,324,410,518,652,815,

%T 1016,1260,1556,1914,2344,2860,3482,4222,5104,6160,7408,8883,10634,

%U 12694,15112,17962,21300,25198,29764,35091,41284,48495,56870,66567,77800,90790,105780,123070,142988

%N McKay-Thompson series of class 30E for Monster.

%H G. C. Greubel, <a href="/A058616/b058616.txt">Table of n, a(n) for n = -1..2500</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of q^(1/3)*(eta(q^2)*eta(q^5)/(eta(q)*eta(q^10)))^2 in powers of q. - _G. C. Greubel_, Jun 23 2018

%F a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 28 2018

%e T30E = 1/q + 2*q^2 + 3*q^5 + 6*q^8 + 9*q^11 + 12*q^14 + 18*q^17 + 26*q^20 + ...

%t eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/3)*(eta[q^2]*eta[q^5]/(eta[q]*eta[q^10]))^2, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 23 2018 *)

%o (PARI) q='q+O('q^50); Vec((eta(q^2)*eta(q^5)/(eta(q)*eta(q^10)))^2) \\ _G. C. Greubel_, Jun 23 2018

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K nonn

%O -1,2

%A _N. J. A. Sloane_, Nov 27 2000

%E Terms a(8) onward added by _G. C. Greubel_, Jun 23 2018