login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 30B for the Monster group with a(0) = 0.
1

%I #28 Jun 22 2018 15:11:32

%S 1,0,4,2,6,10,15,18,37,30,57,70,105,114,178,192,285,346,465,522,751,

%T 830,1125,1328,1708,1974,2600,2964,3795,4424,5541,6390,8090,9230,

%U 11424,13308,16225,18714,22941,26216,31794,36730,44020,50544,60671,69360,82560,94952

%N McKay-Thompson series of class 30B for the Monster group with a(0) = 0.

%H G. C. Greubel, <a href="/A058613/b058613.txt">Table of n, a(n) for n = -1..2500</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F G.f. T30B = 3 + e30A + 1 / e30A = 1 + e30C + 4 / e30C = -2 + e30D + 1 / e30D = -1 + e30F + 1 / e30F where e30A is g.f. A205826, e30C is g.f. A132321, e30D is g.f. A205962, and e30F is g.f. A205977.

%F Convolution square of A058732. - _Michael Somos_, Feb 02 2012

%F a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2017

%F Expansion of A + 3 + 1/A, where A := (eta(q)*eta(q^6)*eta(q^10)*eta(q^15] )/( eta(q^2)*eta(q^3)*eta(q^5)*eta(q^30)))^3, in powers of q. - _G. C. Greubel_, Jun 22 2018

%e T30B = 1/q + 4*q + 2*q^2 + 6*q^3 + 10*q^4 + 15*q^5 + 18*q^6 + 37*q^7 + ...

%t nmax = 50; QP = QPochhammer; A = x*O[x]^(nmax + 1); A = (QP[A + x^3]*QP[A + x^5]*QP[A + x^6]*QP[A + x^10])/(QP[A + x]*QP[A + x^2]*QP[A + x^15]*QP[A + x^30]); a[n_] := SeriesCoefficient[x^2/A + A - x, n + 1]; Table[a[n], {n, -1, nmax}] (* _Jean-François Alcover_, Nov 14 2015, adapted from PARI *)

%t eta[q_]:= q^(1/24)*QPochhammer[q]; A := (eta[q]*eta[q^6]*eta[q^10]* eta[q^15]/(eta[q^2]*eta[q^3]*eta[q^5]*eta[q^30]))^3; a:=CoefficientList[ Series[q*(A + 3 + 1/A), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 22 2018 *)

%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^15 + A) * eta(x^30 + A)); polcoeff( -x + A + x^2 / A,n))} /* _Michael Somos_, Feb 02 2012 */

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, A058732, A132321, A205826, A205962, A205977.

%K nonn

%O -1,3

%A _N. J. A. Sloane_, Nov 27 2000