login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 29A for Monster.
3

%I #19 Jun 19 2018 12:32:12

%S 1,0,3,4,7,10,17,22,32,44,62,80,112,144,193,248,323,410,530,664,845,

%T 1054,1324,1634,2037,2498,3082,3760,4601,5580,6789,8186,9891,11876,

%U 14271,17052,20393,24260,28876,34224,40557,47888,56540,66516,78240

%N McKay-Thompson series of class 29A for Monster.

%H G. C. Greubel, <a href="/A058611/b058611.txt">Table of n, a(n) for n = -1..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F a(n) ~ exp(4*Pi*sqrt(n/29)) / (sqrt(2)*29^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2017

%F G.f.: - 2 + x^(-1) * ( G(x) * G(x^29) + x^6 * H(x) * H(x^29) )^2 where G() is g.f. of A003114 and H() is g.f. of A003106. - _G. C. Greubel_, Jun 18 2018

%e T29A = 1/q + 3*q + 4*q^2 + 7*q^3 + 10*q^4 + 17*q^5 + 22*q^6 + 32*q^7 + ...

%t eta[q_]:= q^(1/24)*QPochhammer[q]; e26B := ((eta[q^2]*eta[q^13])/(eta[q] *eta[q^26]))^2; G[q_] := QPochhammer[q^2, q^5]*QPochhammer[q^3, q^5]* QPochhammer[q^5]/QPochhammer[q]; H[q_] := QPochhammer[q, q^5]* QPochhammer[q^4, q^5]*QPochhammer[q^5]/QPochhammer[q]; a:= CoefficientList[Series[q*(-2 + (1/q)*(G[q]*G[q^29] + q^6*H[q]*H[q^29])^2 ), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 18 2018 *)

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%Y Cf. A136570 (same sequence except for n=0).

%K nonn

%O -1,3

%A _N. J. A. Sloane_, Nov 27 2000

%E More terms from _Michel Marcus_, Feb 18 2014