login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 21C for the Monster group.
1

%I #30 Mar 12 2021 22:24:42

%S 1,3,8,11,25,35,57,86,139,198,291,417,588,812,1132,1538,2103,2805,

%T 3767,4963,6554,8548,11165,14426,18601,23830,30443,38642,48986,61748,

%U 77669,97206,121478,151067,187556,231974,286385,352340,432641,529688,647241,788738,959470,1164291,1410386

%N McKay-Thompson series of class 21C for the Monster group.

%D B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 176 Entry 32(iii).

%H G. C. Greubel, <a href="/A058565/b058565.txt">Table of n, a(n) for n = 0..1000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F From _Michael Somos_, Feb 26 2017: (Start)

%F Expansion of f(-x^7, -x^14)^2 / f(-x, -x^2) * (w3/w1^2 + x*w2/w3^2 - x*w1/w2^2) in powers of x where w1 = f(-x, -x^6), w2 = f(-x^2, -x^5), w3 = f(-x^3, -x^4) and f(, ) is Ramanujan's general theta function.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (63 t)) = f(t) where q = exp(2 Pi i t).

%F Convolution cube is A282877.

%F Convolution product with A002655 is A002652. (End)

%F Expansion of A + 4*q/A^2, where A = q^(1/3)*(eta(q)*eta(q^7)/(eta(q^2) *eta(q^14))), in powers of q. - _G. C. Greubel_, Jun 21 2018

%F a(n) ~ exp(4*Pi*sqrt(n/21)) / (sqrt(2) * 21^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Feb 26 2017

%e G.f. = 1 + 3*x + 8*x^2 + 11*x^3 + 25*x^4 + 35*x^5 + 57*x^6 + 86*x^7 + ... - _Michael Somos_, Feb 26 2017

%e T21C = 1/q + 3*q^2 + 8*q^5 + 11*q^8 + 25*q^11 + 35*q^14 + 57*q^17 + ...

%t a[ n_] := With[ {A = (QPochhammer[ x^7] / QPochhammer[ x])^4}, SeriesCoefficient[ (1/A + 13 x + 49 x^2 A)^(1/3), {x, 0, n}]]; (* _Michael Somos_, Feb 26 2017 *)

%t eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/3)*(eta[q]*eta[q^7]/(eta[q^2] *eta[q^14])); a:= CoefficientList[Series[(A + 4*q/A^2), {q,0,60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 21 2018 *)

%t a[ n_] := With[ {A1 = QPochhammer[ x] QPochhammer[ x^7], A2 = QPochhammer[ x^2] QPochhammer[ x^14]}, SeriesCoefficient[ (A1^3 + 4 x A2^3) / (A1^2 A2), {x, 0, n}]]; (* _Michael Somos_, Oct 27 2018 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^7 + A) / eta(x + A))^4; polcoeff( (1/A + 13*x + 49*x^2 * A)^(1/3), n))}; /* _Michael Somos_, Feb 26 2017 */

%o (PARI) q='q+O('q^50); A = (eta(q)*eta(q^7)/(eta(q^2) *eta(q^14))); Vec(A + 4*q/A^2) \\ _G. C. Greubel_, Jun 21 2018

%o (PARI) {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A) * eta(x^7 + A); A2 = eta(x^2 + A) * eta(x^14 + A); polcoeff( (A1^3 + 4 * x * A2^3) / (A1^2 * A2), n))}; /* _Michael Somos_, Oct 27 2018 */

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%Y Cf. A002652, A002655, A282877.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Nov 27 2000

%E Terms a(8) onward added by _G. C. Greubel_, Jun 21 2018