Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 18 2018 14:11:12
%S 1,0,6,6,15,30,41,66,111,146,222,336,463,642,942,1238,1698,2334,3090,
%T 4098,5514,7136,9336,12216,15673,20142,26013,32880,41820,53070,66609,
%U 83568,105039,130482,162321,201708,248802,306642,377955,462596,566223,692064
%N McKay-Thompson series of class 21A for Monster.
%H G. C. Greubel, <a href="/A058563/b058563.txt">Table of n, a(n) for n = -1..1000</a>
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H David A. Madore, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&threadID=1602206&messageID=5836094">Coefficients of Moonshine (McKay-Thompson) series</a>, The Math Forum
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F a(n) ~ exp(4*Pi*sqrt(n/21)) / (sqrt(2) * 21^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, May 30 2018
%F Expansion of A + 1 + 7/A, where A = eta(q)*eta(q^3)/(eta(q^7)*eta(q^21)), in powers of q. - _G. C. Greubel_, Jun 18 2018
%e T21A = 1/q + 6*q + 6*q^2 + 15*q^3 + 30*q^4 + 41*q^5 + 66*q^6 + 111*q^7 + ...
%t CoefficientList[Series[((QPochhammer[x^3]^2 * QPochhammer[x^7]^2 - x*QPochhammer[x]^2 * QPochhammer[x^21]^2) / (QPochhammer[x] * QPochhammer[x^3] * QPochhammer[x^7] * QPochhammer[x^21]))^2, {x, 0, 100}], x] (* _Vaclav Kotesovec_, May 30 2018 *)
%t eta[q_]:= q^(1/24)*QPochhammer[q]; A:= eta[q]*eta[q^3]/(eta[q^7] *eta[q^21]); a:= CoefficientList[Series[1 + A + 7/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 18 2018 *)
%o (PARI) q='q+O('q^50); A = eta(q)*eta(q^3)/(q*eta(q^7)*eta(q^21)); Vec(A + 1 + 7/A) \\ _G. C. Greubel_, Jun 18 2018
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%K nonn
%O -1,3
%A _N. J. A. Sloane_, Nov 27 2000
%E More terms from _Michel Marcus_, Feb 20 2014