login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 18b for the Monster group.
4

%I #31 Mar 12 2021 22:24:42

%S 1,7,8,22,42,63,106,190,267,428,652,932,1367,2017,2774,3950,5539,7541,

%T 10342,14184,18889,25435,33974,44720,58952,77550,100546,130780,169273,

%U 217230,278636,356566,452544,574548,726938,914742,1149685,1441787,1798740,2242436

%N McKay-Thompson series of class 18b for the Monster group.

%C Convolution inverse is A258941. - _Vaclav Kotesovec_, Nov 07 2015

%H Vaclav Kotesovec, <a href="/A058537/b058537.txt">Table of n, a(n) for n = 0..2000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Comm. Algebra 22, No. 13, 5175-5193 (1994).

%H Michael Somos, <a href="/A007191/a007191.pdf">Emails to N. J. A. Sloane, 1993</a>

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of (27 * x * (b(x)^3 + c(x)^3)^2 / (b(x) * c(x))^3)^(1/6) in powers of x where b(), c() are cubic AGM theta functions. - _Michael Somos_, Jun 16 2012

%F Expansion of q^(1/6) * a(q) / (b(q) * c(q)/3)^(1/2) in powers of q where a(), b(), c() are cubic AGM theta functions. - _Michael Somos_, Aug 20 2012

%F Convolution square is A058092. Convolution sixth power is A030197. - _Michael Somos_, Jun 16 2012

%F a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - _Vaclav Kotesovec_, Nov 07 2015

%e 1 + 7*x + 8*x^2 + 22*x^3 + 42*x^4 + 63*x^5 + 106*x^6 + 190*x^7 + 267*x^8 + ...

%e T18b = 1/q + 7*q^5 + 8*q^11 + 22*q^17 + 42*q^23 + 63*q^29 + 106*q^35 + ...

%t CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3) / (QPochhammer[x, x]*QPochhammer[x^3, x^3]^2), {x, 0, 50}], x] (* _Vaclav Kotesovec_, Nov 07 2015 *)

%t eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(-1/6)*eta[q]*eta[q^3]^2/(eta[q]^3 + 9*eta[q^9]^3); CoefficientList[Series[1/A, {q, 0, 60}], q] (* _G. C. Greubel_, Jun 22 2018 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( ((1 + 27 * x * A)^2 / A)^(1/6), n))} \\ _Michael Somos_, Jun 16 2012

%o (PARI) q='q+O('q^50); A = (eta(q)^3 + 9*q*eta(q^9)^3)/(eta(q)* eta(q^3)^2); Vec(A) \\ _G. C. Greubel_, Jun 22 2018

%Y Cf. A030197, A058092, A258941.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Nov 27 2000