Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 18 2024 16:47:08
%S 1,25,265,2161,16081,115465,816985,5745121,40294561,282298105,
%T 1976795305,13839692881,96884227441,678208723945,4747518463225,
%U 33232801429441,232630126566721,1628412435648985,11398891698588745,79792255837258801,558545832702224401
%N Number of 3 X n binary matrices with no zero rows or columns.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-31,21).
%F Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m}(-1)^j*C(m, j)*(2^(m-j)-1)^n.
%F a(n) = 7^n-3*3^n+3.
%F a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3). G.f.: -x*(21*x^2+14*x+1) / ((x-1)*(3*x-1)*(7*x-1)). - _Colin Barker_, Jul 10 2013
%t LinearRecurrence[{11,-31,21},{1,25,265},30] (* _Harvey P. Dale_, Aug 15 2014 *)
%o (PARI) a(n) = 7^n-3*3^n+3 \\ _Charles R Greathouse IV_, Feb 10 2017
%Y Cf. A055602, A024206, A055609 (unlabeled case), A058481, column 3 of A183109 and A218695.
%K easy,nonn,nice
%O 1,2
%A _Vladeta Jovovic_, Nov 26 2000
%E More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000
%E More terms from _Colin Barker_, Jul 10 2013