Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Dec 16 2024 13:27:59
%S 0,1,0,1,2,4,9,20,47,112,274,678,1709,4346,11176,28966,75656,198814,
%T 525496,1395758,3723986,9975314,26817655,72332320,195679137,530814386,
%U 1443556739,3934880554,10748839215,29420919456,80678144437,221618678694
%N Number of essentially parallel series-parallel networks with n unlabeled edges, multiple edges not allowed.
%H Vaclav Kotesovec, <a href="/A058385/b058385.txt">Table of n, a(n) for n = 0..500</a> (using data from A058387)
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Series-parallel networks</a>
%H Steven R. Finch, <a href="/A000084/a000084_2.pdf">Series-parallel networks</a>, July 7, 2003. [Cached copy, with permission of the author]
%H Ji Li, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p8">Combinatorial Logarithm and Point-Determining Cographs</a>, Electronic Journal of Combinatorics, 19 (3) (2012), #P8.
%H John W. Moon, <a href="http://dx.doi.org/10.1016/S0304-0208(08)73057-3">Some enumerative results on series-parallel networks</a>, Annals Discrete Math., 33 (1987), 199-226 (the sequence q_n).
%H <a href="/index/Mo#Moon87">Index entries for sequences mentioned in Moon (1987)</a>
%F G.f. satisfies 1 - x + x^2 + 2*A(x) = Product_{j>=1} (1-x^j)^(-a(j)).
%p Q := x; q[1] := 1; for d from 1 to 40 do q[d+1] := c; Q := Q+c*x^(d+1); t0 := mul((1-x^j)^(-q[j]),j=1..d+1); t01 := series(t0,x,d+2); t05 := series(2*Q +1-x+x^2 -t01, x, d+2); t1 := coeff(t05,x,d+1); t2 := solve(t1,c); q[d+1] := t2; Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058385 := n->coeff(Q,x,n);
%t max = 31; f[x_] := Sum[a[k]*x^k, {k, 0, max}]; a[0] = 0; a[1] = 1; a[2] = 0; a[3] = 1; se = Series[ 1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-a[j]), {j, 1, max}], {x, 0, max}]; sol = Solve[ Thread[ CoefficientList[ se, x] == 0]]; A058385 = Table[a[n], {n, 0, max}] /. First[sol] (* _Jean-François Alcover_, Dec 27 2011, after g.f. *)
%t terms = 32; A[_] = 0; Do[A[x_] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[A[x], x, j]]), {j, 1, terms}]) + O[x]^ terms // Normal, 4*terms]; CoefficientList[A[x] + O[x]^terms, x] (* _Jean-François Alcover_, Jan 10 2018 *)
%Y Cf. A058379, A058386, A058387.
%K nonn,easy,nice
%O 0,5
%A _N. J. A. Sloane_, Dec 20 2000