login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for square root of 2Pi.
2

%I #13 Dec 15 2017 17:34:53

%S 2,1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,1,4,1,1,32,1,1,5,1,1,55,6,1,

%T 1,3,1,3,3,1,3,1,1,3,4,2,1,5,1,1,2,1,95,3,1,8,1,1,1,3,22,1,1,2,1,1,7,

%U 4,5,1,1,1,204,6,2,16,1,4,1,21,1,1,1,93,1,1,71,1,2,1,1,1,1,1,1,25,1,2,5

%N Continued fraction for square root of 2Pi.

%H Harry J. Smith, <a href="/A058293/b058293.txt">Table of n, a(n) for n = 0..20000</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%e 2.50662827463100050241576528... = 2 + 1/(1 + 1/(1 + 1/(37 + 1/(4 + ...)))). - _Harry J. Smith_, May 31 2009

%t ContinuedFraction[ Sqrt[2Pi], 100 ]

%o (PARI) contfrac(sqrt(2*Pi))

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2*Pi)); for (n=0, 20000, write("b058293.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, May 31 2009

%Y Cf. A019727 Decimal expansion. - _Harry J. Smith_, May 31 2009

%K cofr,nonn,easy

%O 0,1

%A _Robert G. Wilson v_, Dec 07 2000

%E More terms from _Jason Earls_, Jul 03 2001