login
Continued fraction expansion of Pi^e.
5

%I #13 Dec 15 2017 17:34:53

%S 22,2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,4,1,2,1,1,50,1,1,1,1,7,1,1,

%T 1,3,6,1,20,10,1,2,10,1,8,2,2,1,1,1,4,1,43,2,2,3,1,2,8,1,1,16,1,4,1,3,

%U 1,1,1,2,1,1,6,1,2,1,1,1,1,1,4,4,1,1,1,9,1,1,105,1,3,6,2,1,1,3,1,3,2,1,1

%N Continued fraction expansion of Pi^e.

%H Harry J. Smith, <a href="/A058288/b058288.txt">Table of n, a(n) for n = 0..20000</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%e Pi^e = 22.459157718361045473... = 22 + 1/(2 + 1/(5 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 19 2009

%p cfrac(evalf((evalf(Pi))^(exp(1)),2560),256,'quotients');

%t ContinuedFraction[ Pi^E, 100]

%o (PARI) contfrac(Pi^exp(1))

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^exp(1)); for (n=0, 20000, write("b058288.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Apr 19 2009

%Y Cf. A059850.

%K cofr,nonn,easy

%O 0,1

%A _Robert G. Wilson v_, Dec 07 2000

%E More terms from _Jason Earls_, Jul 12 2001