login
Continued fraction for Pi^4.
2

%I #7 Jan 03 2016 15:48:54

%S 97,2,2,3,1,16539,1,6,7,6,8,6,3,9,1,1,1,18,1,4,1,13,1,2,1,127,1,1,1,4,

%T 1,6,1,1,1,10,10,1,1,2,1,2,1,5,1,1,10,1,3,2,1,1,4,9,1,7,70,1,13,1,2,6,

%U 1,2,24,5,2,6,1,1,1,8,1,1,11,2,1,1,4,3,1,3,2,2,1,7,1,4,1,22,2,1,2,3,1

%N Continued fraction for Pi^4.

%C "Truncating just before the unexpectedly large partial quotient 16,539 gives a famous approximation of Ramanujan for Pi^4 of 97 9/22." (Wells)

%D David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 116.

%H Harry J. Smith, <a href="/A058286/b058286.txt">Table of n, a(n) for n = 0..20000</a>

%e 97.4090910340024372364403326... = 97 + 1/(2 + 1/(2 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 22 2009

%t ContinuedFraction[ Pi^4, 100]

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4); for (n=0, 20000, write("b058286.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 22 2009

%Y Cf. A092425 Decimal expansion. - _Harry J. Smith_, Jun 22 2009

%K cofr,nonn,easy

%O 0,1

%A _Robert G. Wilson v_, Dec 07 2000