login
Continued fraction for Pi^2.
2

%I #13 Dec 15 2017 17:34:52

%S 9,1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,1,2,1,1,3,15,1,1,2,2,1,3,

%T 2,7,1,9,18,30,2,145,1,1,17,9,1,1,1,1,7,12,1,2,1,12,1,1,4,1,5,1,1,2,3,

%U 4,1,3,2,9,1,20,11,14,3,1,1,7,1,1,1,1,2,268,2,1,25,3,8,1,6,1,1,22,1,1

%N Continued fraction for Pi^2.

%H Harry J. Smith, <a href="/A058284/b058284.txt">Table of n, a(n) for n = 0..20000</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%e 9.869604401089358618834490999... = 9 + 1/(1 + 1/(6 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 31 2009

%t ContinuedFraction[ Pi^2, 100]

%o (PARI) contfrac(Pi^2)

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^2); for (n=0, 20000, write("b058284.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, May 31 2009

%Y Cf. A002388 Decimal expansion. - _Harry J. Smith_, May 31 2009

%K cofr,nonn,easy

%O 0,1

%A _Robert G. Wilson v_, Dec 07 2000

%E More terms from _Jason Earls_, Jul 11 2001