login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of edges in all simple (loopless) paths, connecting any node with all the remaining ones in optimal graphs of degree 4.
0

%I #14 Jul 30 2022 08:18:03

%S 4,28,112,352,972,2484,6040,14200

%N Number of edges in all simple (loopless) paths, connecting any node with all the remaining ones in optimal graphs of degree 4.

%C Number of edges occurring in all simple, loopless paths, connecting any node with all the remaining ones forming optimal graphs degree of 4, (2*d(G)^2+2*d(G)+1, 2*d(G)+1) with d(G) denoting graph diameter.

%D R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley company, 1994.

%F a(n) = d(V)*Sum_{k=1..d(G)} k*(2^k-1) where d(V) is graph degree, and d(G) is graph diameter a(n)=d(V)*array(1..d(G))*array(1..(2^d(G)-1));

%F Conjectures from _Sean A. Irvine_, Jul 29 2022: (Start)

%F a(n) = 4 * Sum_{k=1..n} k*(2^k-1).

%F a(n) = (8*n-8)*2^n - 2*n^2 - 2*n + 8.

%F a(n) = a(n-1) + 4*n*(2^n-1) with a(0)=0.

%F (End)

%e a(5)=4(1+2*3+3*7+4*15+5*31)=972 S := array(1..5,[1,2,3,4,5]); T := array(1..5,[1,3,7,15,31]); a(5) := evalm(S&*T); a(5) := 243

%p d(V) := 4; n := 5; a(n) := d(V)*sum('n*(2^n-1)','n'=1..n); or d(V) := 4; S := array(1..5,[1,2,3,4,5]); T := array(1..5,[1,3,7,15,31]); a(5) := d(V)*evalm(S&*T);

%K nonn,more

%O 1,1

%A S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 13 2002