%I #2 Mar 30 2012 17:30:27
%S 0,0,0,1,0,0,1,0,0,5,0,1,2,0,0,2,1,0,1,0,0,1,0,1,1,0,2
%N Find least k such that (n+1)^k + n^k is a prime (A057856); then k=2^m and sequence gives values of m.
%t Do[ k = 0; While[ !PrimeQ[ (n + 1)^(2^k) + n^(2^k) ], k++ ]; Print[ 2^k ], {n, 1, 60} ].
%Y Cf. A057856.
%K hard,nonn
%O 1,10
%A _Robert G. Wilson v_, Nov 14 2000