login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime > n! minus largest prime <= n!.
5

%I #13 Aug 13 2015 19:35:56

%S 1,2,6,14,8,12,54,30,22,14,30,90,20,90,76,90,78,190,60,62,104,186,204,

%T 190,96,44,168,254,108,188,80,38,290,174,258,98,44,170,136,132,176,

%U 180,156,292,190,312,156,142,158,450,120,130,350,132,610,384,392,430

%N Smallest prime > n! minus largest prime <= n!.

%H Hans Havermann, <a href="/A058054/b058054.txt">Table of n, a(n) for n = 2..2000</a>

%F a(n) = A037151(n) - A006990(n)

%F a(n) = A033932(n) + A033933(n)

%e For n = 2, 3, 4, 5, A037151(n) = 3, 7, 29, 127 and A006990(n) = 2, 5, 23, 113. The differences are: 1, 2, 6, 14.

%p [seq(nextprime(i!)-prevprime(i!+1), i=2...100)];

%t f[n_] := NextPrime[n!] - NextPrime[n!, -1]; Array[f, 70, 3] (* _Robert G. Wilson v_, Jul 23 2014 *)

%Y Cf. A006990, A037151, A033932, A033933.

%Y Essentially the same as A054588.

%K nonn

%O 2,2

%A _Labos Elemer_, Nov 20 2000

%E Edited by _Hans Havermann_, Jul 23 2014