login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the distances between the 2^n vertices in the De Bruijn Graphs on words of length n on alphabet {0,1}.
0

%I #9 Feb 18 2021 12:46:20

%S 2,18,118,680,3620,18274,88760,418900,1933904,8775534,39277136,

%T 173843142,762388102,3317784992,14344443516,61671799608,263865053452,

%U 1124175400716,4771570406736,20185774001256,85141101913670

%N Sum of the distances between the 2^n vertices in the De Bruijn Graphs on words of length n on alphabet {0,1}.

%C Given two words X,Y in {0,1}^N, the distance d(X,Y) is the least integer K such that there exists a word M with X=UM and Y=MV and |U|=|V|=K. Define a(N)=sum(d(X,Y); X,Y in {0,1}^N).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/deBruijnSequence.html">de Bruijn Sequence</a>.

%e d(0,0)=0, d(0,1)=1, d(1,0)=1, d(1,1)=0, hence a(1)=0+1+1+0=2.

%e d(00,00)=0, d(00,01)=1, d(00,10)=2, d(00,11)=2, d(01,00)=2, d(01,01)=0, d(01,10)=1, d(01,11)=1, d(10,00)=1, d(10,01)=1, d(10,10)=0, d(10,11)=2, d(11,00)=2, d(11,01)=2, d(11,10)=1, d(11,11)=0, hence a(2)=0+1+2+2+2+0+1+1+1+1+0+2+2+2+1+0=18.

%o (Python)

%o from numba import njit

%o @njit

%o def d(x, y, n):

%o for k in range(n):

%o mask = (1 << (n-k)) - 1

%o if x & mask == (y >> k): return k

%o return n

%o @njit

%o def a(n):

%o s = 0

%o for x in range(2**(n-1)):

%o for y in range(2**n):

%o s += d(x, y, n)

%o return 2*s

%o print([a(n) for n in range(1, 15)]) # _Michael S. Branicky_, Feb 18 2021

%Y Cf. A166316.

%K nonn

%O 1,1

%A Serge Burckel (burckel(AT)iml.univ-mrs.fr), Nov 19 2000

%E a(9)-a(21) from _Michael S. Branicky_, Feb 18 2021