login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of prime factors of 6^n - 1 (counted with multiplicity).
17

%I #25 Sep 08 2022 08:45:02

%S 1,2,2,3,3,4,2,4,4,6,3,7,3,6,6,6,5,7,3,9,4,5,5,9,6,7,6,9,2,11,3,9,6,8,

%T 7,13,6,6,6,12,3,10,5,9,11,8,4,13,5,10,9,11,4,11,7,14,7,6,4,20,4,5,10,

%U 12,9,12,3,11,8,18,2,18,5,10,12,9,6,15,4,17,8,7,8,17,10,7,7,12,4,18,6

%N Number of prime factors of 6^n - 1 (counted with multiplicity).

%H Amiram Eldar, <a href="/A057955/b057955.txt">Table of n, a(n) for n = 1..420</a>

%H S. S. Wagstaff, Jr., <a href="https://homes.cerias.purdue.edu/~ssw/cun/index.html">The Cunningham Project</a>

%F Möbius transform of A085031. - _T. D. Noe_, Jun 19 2003

%F a(n) = A001222(A024062(n)). - _Amiram Eldar_, Feb 02 2020

%e 6^10 - 1 = 60466175 = 5^2 * 7 * 11 * 101 * 311 and a(10) = bigomega(60466175) = 2+1+1+1+1 = 6. - _Bernard Schott_, Feb 02 2020

%t PrimeOmega[6^Range[100]-1] (* _Harvey P. Dale_, Dec 14 2015 *)

%o (Magma) f:=func<n|&+[p[2]: p in Factorization(n)]>; [f(6^n - 1):n in [1..90]]; // _Marius A. Burtea_, Feb 02 2020

%Y bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), this sequence (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), A046051 (b=2).

%Y Cf. A001222, A024062, A085031, A274907.

%K nonn

%O 1,2

%A _Patrick De Geest_, Nov 15 2000