login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of residue classes modulo n which contain a prime.
5

%I #14 May 13 2017 21:05:07

%S 1,2,3,3,5,4,7,5,7,6,11,6,13,8,10,9,17,8,19,10,14,12,23,10,21,14,19,

%T 14,29,11,31,17,22,18,26,14,37,20,26,18,41,15,43,22,26,24,47,18,43,22,

%U 34,26,53,20,42,26,38,30,59,19,61,32,38,33,50,23,67,34,46

%N Number of residue classes modulo n which contain a prime.

%C a(n) = n iff n is prime; a(2*n)<=n+1; a(4*p)=2*p for primes p>2: a(A001749(n))=A057860(A001749(n)). - _Reinhard Zumkeller_, Jan 11 2004

%H Alois P. Heinz, <a href="/A057859/b057859.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000010(n) + A001221(n) = n - A057860(n).

%e a(30) = 11 since 30k+m can be prime if m = 2, 3 or 5 (once each with k = 0) or m = 1, 7, 11, 13, 17, 19, 23 or 29 (each for an infinite number of values of k).

%p with(numtheory):

%p a:= n-> phi(n)+nops(factorset(n)):

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jul 14 2016

%t Table[EulerPhi[n] + PrimeNu[n], {n, 1, 100}] (* _G. C. Greubel_, May 13 2017 *)

%o (PARI) for(n=1,100, print1(eulerphi(n) + omega(n), ", ")) \\ _G. C. Greubel_, May 13 2017

%Y Cf. A057857, A179179.

%K nonn,look

%O 1,2

%A _Henry Bottomley_, Sep 08 2000