login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n+1)*(4*n^2+4*n+3)/3.
23

%I #56 Mar 30 2024 02:43:52

%S 1,11,45,119,249,451,741,1135,1649,2299,3101,4071,5225,6579,8149,9951,

%T 12001,14315,16909,19799,23001,26531,30405,34639,39249,44251,49661,

%U 55495,61769,68499,75701,83391,91585,100299,109549,119351,129721,140675,152229,164399

%N a(n) = (2*n+1)*(4*n^2+4*n+3)/3.

%C For n>0, 30*a(n) is the sum of the ten distinct products of 2*n-1, 2*n+1, and 2*n+3. For example, when n = 1, we sum the ten distinct products of 1, 3, and 5: 1*1*1 + 1*1*3 + 1*1*5 + 1*3*3 + 1*3*5 + 1*5*5 + 3*3*3 + 3*3*5 + 3*5*5 + 5*5*5 = 330 = 30*11 = 30*a(1). - _J. M. Bergot_, Apr 06 2014

%H Vincenzo Librandi, <a href="/A057813/b057813.txt">Table of n, a(n) for n = 0..1000</a>

%H T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Reports, 273 (1996), 199-241, eq. (10).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 2*A050533(n) + 1. - _N. J. A. Sloane_, Sep 22 2004

%F G.f.: (1+7*x+7*x^2+x^3)/(1-x)^4. - _Colin Barker_, Mar 01 2012

%F G.f. for sequence with interpolated zeros: 1/(8*x)*sinh(8*arctanh(x)) = 1/(16*x)*( ((1 + x)/(1 - x))^4 - ((1 - x)/(1 + x))^4 ) = 1 + 11*x^2 + 45*x^4 + 119*x^6 + .... Cf. A019560. - _Peter Bala_, Apr 07 2017

%F E.g.f.: (3 + 30*x + 36*x^2 + 8*x^3)*exp(x)/3. - _G. C. Greubel_, Dec 01 2017

%F From _Peter Bala_, Mar 26 2024: (Start)

%F 12*a(n) = (2*n + 1)*(a(n + 1) - a(n - 1)).

%F Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 3*Pi/16 - 1/2. Cf. A016754 and A336266. (End)

%p A057813:=n->(2*n + 1)*(4*n^2 + 4*n + 3)/3; seq(A057813(n), n=0..50); # _Wesley Ivan Hurt_, Apr 06 2014

%t Table[(2*n + 1)*(4*n^2 + 4*n + 3)/3, {n, 0, 50}] (* _David Nacin_, Mar 01 2012 *)

%o (PARI) P(x, y, z) = x^3 + x^2*y + x^2*z + x*y^2 + x*y*z + x*z^2 + y^3 + y^2*z + y*z^2 + z^3;

%o a(n) = P(2*n-1, 2*n+1, 2*n+3)/30; \\ _Michel Marcus_, Apr 22 2014

%o (Magma) [(2*n+1)*(4*n^2+4*n+3)/3 : n in [0..50]] // _Wesley Ivan Hurt_, Apr 22 2014

%Y 1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

%Y Cf. A019560, A336266.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 07 2000