login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057764
Triangle T(n,k) = number of nonzero elements of multiplicative order k in Galois field GF(2^n) (n >= 1, 1 <= k <= 2^n-1).
3
1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
OFFSET
1,4
LINKS
Robert Israel, Table of n, a(n) for n = 1..16369 (rows 1 to 13, flattened)
FORMULA
From Robert Israel, Jul 21 2016: (Start)
T(n,k) = A000010(k) if k is a divisor of 2^n-1, otherwise 0.
Sum_{k=1..2^n-1} T(n,k) = 2^n-1 = A000225(n).
G.f. as triangle: g(x,y) = Sum_{j>=0} x^A002326(j)*A000010(2j+1)*y^(2j+1)/(1-x^A002326(j)). (End)
EXAMPLE
Table begins:
1;
1, 0, 2;
1, 0, 0, 0, 0, 0, 6;
...
MAPLE
f:= proc(n, k) if 2^n-1 mod k = 0 then numtheory:-phi(k) else 0 fi end proc:
seq(seq(f(n, k), k=1..2^n-1), n=1..10); # Robert Israel, Jul 21 2016
MATHEMATICA
T[n_, k_] := If[Divisible[2^n - 1, k], EulerPhi[k], 0];
Table[T[n, k], {n, 1, 10}, {k, 1, 2^n - 1}] // Flatten (* Jean-François Alcover, Feb 07 2023, after Robert Israel *)
PROG
(Magma) {* Order(g) : g in GF(2^6) | g ne 0 *};
CROSSREFS
KEYWORD
nonn,easy,nice,tabf
AUTHOR
N. J. A. Sloane, Nov 01 2000
EXTENSIONS
T(6,21) corrected by Robert Israel, Jul 21 2016
STATUS
approved