login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057764 Triangle T(n,k) = number of nonzero elements of multiplicative order k in Galois field GF(2^n) (n >= 1, 1 <= k <= 2^n-1). 3
1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Robert Israel, Table of n, a(n) for n = 1..16369 (rows 1 to 13, flattened)

FORMULA

From Robert Israel, Jul 21 2016: (Start)

T(n,k) = A000010(k) if k is a divisor of 2^n-1, otherwise 0.

Sum_{k=1..2^n-1} T(n,k) = 2^n-1 = A000225(n).

G.f. as triangle: g(x,y) = Sum_{j>=0} x^A002326(j)*A000010(2j+1)*y^(2j+1)/(1-x^A002326(j)). (End)

EXAMPLE

1; 1,0,2; 1,0,0,0,0,0,6; ...

MAPLE

f:= proc(n, k) if 2^n-1 mod k = 0 then numtheory:-phi(k) else 0 fi end proc:

seq(seq(f(n, k), k=1..2^n-1), n=1..10); # Robert Israel, Jul 21 2016

PROG

(MAGMA) {* Order(g) : g in GF(2^6) | g ne 0 *};

CROSSREFS

Cf. A000010, A000225, A002326, A053287.

Sequence in context: A277627 A037857 A037875 * A010108 A033782 A302721

Adjacent sequences:  A057761 A057762 A057763 * A057765 A057766 A057767

KEYWORD

nonn,easy,nice,tabf

AUTHOR

N. J. A. Sloane, Nov 01 2000

EXTENSIONS

T(6,21) corrected by Robert Israel, Jul 21 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 11:13 EDT 2021. Contains 348067 sequences. (Running on oeis4.)