The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057741 Table T(n,k) giving number of elements of order k in dihedral group D_{2n} of order 2n, n >= 1, 1<=k<=g(n), where g(n) = 2 if n=1 else g(n) = n. 2
 1, 1, 1, 3, 1, 3, 2, 1, 5, 0, 2, 1, 5, 0, 0, 4, 1, 7, 2, 0, 0, 2, 1, 7, 0, 0, 0, 0, 6, 1, 9, 0, 2, 0, 0, 0, 4, 1, 9, 2, 0, 0, 0, 0, 0, 6, 1, 11, 0, 0, 4, 0, 0, 0, 0, 4, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 13, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 15, 0, 0, 0, 0, 6, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Note that D_2 equals the cyclic group of order 2. LINKS Table of n, a(n) for n=1..101. FORMULA If k<>2 and k does not divide n, this number is 0; if k<>2 and k divides n, this number is phi(k), where phi is the Euler totient function; if k=2, this number is n for odd n and n+1 for even n. EXAMPLE 1,1; 1,3; 1,3,2; 1,5,0,2; 1,5,0,0,4; ... MATHEMATICA t[n_, k_] /; k != 2 && ! Divisible[n, k] = 0; t[n_, k_] /; k != 2 && Divisible[n, k] := EulerPhi[k]; t[n_, 2] := n + 1 - Mod[n, 2]; Flatten[Table[t[n, k], {n, 1, 14}, {k, 1, If[n == 1, 2, n]}]] (* Jean-François Alcover, Jun 19 2012, from formula *) row[n_] := (orders = PermutationOrder /@ GroupElements[DihedralGroup[n]]; Table[Count[orders, k], {k, 1, Max[orders]}]); Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 31 2016 *) CROSSREFS Cf. A057731, A054522, A057740. Sequence in context: A102668 A243848 A271617 * A133571 A357059 A326420 Adjacent sequences: A057738 A057739 A057740 * A057742 A057743 A057744 KEYWORD nonn,tabf,easy,nice AUTHOR Roger Cuculière, Oct 29 2000 EXTENSIONS More terms from James A. Sellers, Oct 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 14:24 EST 2024. Contains 370283 sequences. (Running on oeis4.)