Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Dec 12 2023 08:25:31
%S 3,3,4,4,3,4,4,5,4,6,3,4,4,6,5,5,3,4,6,3,6,5,5,4,4,5,6,4,4,8,5,4,5,5,
%T 5,3,4,6,4,6,4,8,3,5,6,4,7,5,4,5,7,4,6,4,6,6,6,3,12,4,5,5,6,3,4,4,4,5,
%U 5,4,7,6,4,5,9,5,3,4,4,6,3,8,4,6,5,6,3,5,6,6,8,5,5,6,7,5,5,4,3,4,5,5,5,5,4
%N Length of cycle in trajectory of P under the 'Px+1' map, where P = n-th prime, or -1 if trajectory does not cycle.
%C See A057684 for definition.
%C Note that not all cycles for the iteration starting with p contain the number 1; a(60), for the prime 281, is the first example of this. Its iterates are: 281, 78962, 39481, 3037, 853398, 426699, 142233, 47411, 6773, 521, 146402, 73201, 1031, 289712, 144856, 72428, 36214, 18107, 953, 267794, 133897, with the last 12 terms cycling. Another example is provided by 2543, the 372nd prime. - _T. D. Noe_, Apr 02 2008
%H Michel Marcus, <a href="/A057690/b057690.txt">Table of n, a(n) for n = 2..10000</a>
%F a(n) = A023514(n)+1 if the cycle contains the number 1. - _Jon Maiga_, Jan 12 2021
%e For n=4, P=7: trajectory of 7 is 7, 50, 25, 5, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, ..., which has maximal term 50, cycle length 4 and there are 4 terms before it enters the cycle.
%t Px1[p_,n_]:=Catch[For[i=1,i<PrimePi[p],i++,If[Divisible[n,Prime[i]],Throw[n/Prime[i]]]];p*n+1];
%t Module[{nmax=100,m},Table[Length[m=NestWhileList[Px1[Prime[n],#]&,Prime[n],UnsameQ,All]]-FirstPosition[m,Last[m]][[1]],{n,2,nmax}]] (* _Paolo Xausa_, Dec 11 2023 *)
%o (PARI) f(m, p) = {forprime(q=2, precprime(p-1), if (! (m % q), return (m/q));); m*p+1;}
%o a(n) = {my(p=prime(n), x=p, list = List()); listput(list, x); while (1, x = f(x, p); for (i=1, #list, if (x == list[i], return (#list - i + 1));); listput(list, x););} \\ _Michel Marcus_, Jan 12 2021
%o (Python)
%o from sympy import prime, primerange
%o def a(n):
%o P = prime(n)
%o x, plst, traj, seen = P, list(primerange(2, P)), [], set()
%o while x not in seen:
%o traj.append(x)
%o seen.add(x)
%o x = next((x//p for p in plst if x%p == 0), P*x+1)
%o return len(traj) - traj.index(x)
%o print([a(n) for n in range(2, 107)]) # _Michael S. Branicky_, Dec 11 2023
%Y Cf. A057446, A057216, A057522, A057534, A057614. See also A033478, A057688, A057684, A057685, A057686, A057687, A057689, A057691.
%Y Cf. A023514.
%K nonn,nice,easy
%O 2,1
%A _N. J. A. Sloane_, Oct 20 2000
%E More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2000
%E Corrected by _T. D. Noe_, Apr 02 2008