login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Initial prime in first sequence of n primes congruent to 4 modulo 5. The first prime in a sequence of length n all ending with the digit 9.
0

%I #12 Jun 13 2014 19:13:23

%S 19,139,3089,18839,123229,2134519,12130109,23884639,363289219,

%T 9568590299,24037796539,130426565719,405033487139,3553144754209,

%U 4010803176619,71894236537009,71894236537009

%N Initial prime in first sequence of n primes congruent to 4 modulo 5. The first prime in a sequence of length n all ending with the digit 9.

%H J. K. Andersen, <a href="http://primerecords.dk/congruent-primes.htm">Consecutive Congruent Primes</a>.

%e a(5) = 123229 because this number is the first in a sequence of 5 consecutive primes all of the form 5n + 4.

%t NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; Return[ k ] ]; p = 0; Do[ a = Table[ -1, {n} ]; k = Max[ 1, p ]; While[ Union[ a ] != {4}, k = NextPrime[ k ]; a = Take[ AppendTo[ a, Mod[ k, 5 ] ], -n ] ]; p = NestList[ PrevPrime, k, n ]; Print[ p[ [ -2 ] ] ]; p = p[ [ -1 ] ], {n, 1, 9} ]

%Y Cf. A054681, A057618, A057631, A068150.

%K nonn

%O 1,1

%A _Robert G. Wilson v_, Oct 10 2000

%E Phil Carmody gives a(15)= 4010803176619 in A054681

%E More terms from _Jens Kruse Andersen_, Jun 03 2006

%E a(16)-a(17) from _Giovanni Resta_, Aug 01 2013