|
|
A057571
|
|
Area under Dyck paths.
|
|
3
|
|
|
1, 6, 19, 58, 146, 380, 883, 2138, 4774, 11092, 24190, 54724, 117508, 260920, 554179, 1213690, 2557022, 5541092, 11601610, 24930860, 51942076, 110861896, 230053614, 488253348, 1009853116, 2133122760, 4399720348, 9256078408
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is 2*the sum of the areas under all Dyck paths of length n.
The Dyck paths considered in this sequence always have height >= 0 but do not need to finish at height = 0. n is the total number of steps.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n=1..400
C. Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001.
|
|
FORMULA
|
G.f.: 2*x*(8*x^2+4*x-1-sqrt(1-4*x^2)*(4*x^2+4*x-1))/(4*(1-2*x)^2*(1+2*x)*x^2). - corrected by Vaclav Kotesovec, Sep 11 2013
Recurrence: (n+1)*(4*n^3 - 28*n^2 + 55*n - 27)*a(n) = 2*(8*n^3 - 48*n^2 + 52*n + 27)*a(n-1) + 4*(2*n - 1)*(4*n^3 - 24*n^2 + 29*n + 18)*a(n-2) - 16*(2*n - 3)*(2*n^2 - 8*n - 1)*a(n-3) - 16*(n-3)*(4*n^3 - 16*n^2 + 11*n + 4)*a(n-4). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ 3*n*2^(n-1) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Sep 11 2013
|
|
MATHEMATICA
|
f[x_] := 2*(8*x^2+4*x-1-Sqrt[1-4*x^2]*(4*x^2+4*x-1)) / (4*(1-2*x)^2*(1+2*x)*x^2); CoefficientList[ Series[ f[x], {x, 0, 27}], x] (* Jean-François Alcover, Dec 21 2011, after area sum g.f. multiplied by 2 *)
|
|
CROSSREFS
|
Sequence in context: A274599 A286184 A027044 * A238055 A272227 A272587
Adjacent sequences: A057568 A057569 A057570 * A057572 A057573 A057574
|
|
KEYWORD
|
easy,nonn,nice
|
|
AUTHOR
|
Cyril Banderier, Oct 04 2000
|
|
STATUS
|
approved
|
|
|
|