The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057571 Area under Dyck paths. 3
 1, 6, 19, 58, 146, 380, 883, 2138, 4774, 11092, 24190, 54724, 117508, 260920, 554179, 1213690, 2557022, 5541092, 11601610, 24930860, 51942076, 110861896, 230053614, 488253348, 1009853116, 2133122760, 4399720348, 9256078408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is 2*the sum of the areas under all Dyck paths of length n. The Dyck paths considered in this sequence always have height >= 0 but do not need to finish at height = 0. n is the total number of steps. LINKS T. D. Noe, Table of n, a(n) for n=1..400 C. Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001. FORMULA G.f.: 2*x*(8*x^2+4*x-1-sqrt(1-4*x^2)*(4*x^2+4*x-1))/(4*(1-2*x)^2*(1+2*x)*x^2). - corrected by Vaclav Kotesovec, Sep 11 2013 Recurrence: (n+1)*(4*n^3 - 28*n^2 + 55*n - 27)*a(n) = 2*(8*n^3 - 48*n^2 + 52*n + 27)*a(n-1) + 4*(2*n - 1)*(4*n^3 - 24*n^2 + 29*n + 18)*a(n-2) - 16*(2*n - 3)*(2*n^2 - 8*n - 1)*a(n-3) - 16*(n-3)*(4*n^3 - 16*n^2 + 11*n + 4)*a(n-4). - Vaclav Kotesovec, Sep 11 2013 a(n) ~ 3*n*2^(n-1) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Sep 11 2013 MATHEMATICA f[x_] := 2*(8*x^2+4*x-1-Sqrt[1-4*x^2]*(4*x^2+4*x-1)) / (4*(1-2*x)^2*(1+2*x)*x^2); CoefficientList[ Series[ f[x], {x, 0, 27}], x] (* Jean-François Alcover, Dec 21 2011, after area sum g.f. multiplied by 2 *) CROSSREFS Sequence in context: A274599 A286184 A027044 * A238055 A272227 A272587 Adjacent sequences:  A057568 A057569 A057570 * A057572 A057573 A057574 KEYWORD easy,nonn,nice AUTHOR Cyril Banderier, Oct 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 09:09 EDT 2022. Contains 354112 sequences. (Running on oeis4.)