Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 08 2024 14:08:19
%S 1,1,2,48,331776,79254226206720,471092427871945743012986880000,
%T 351177419973413722592573060611594181593855426560000000000
%N 4th level factorials: product of first n superduperfactorials.
%C In general for k-th level factorials a(n) =Product of first n (k-1)-th level factorials =Product[i^C(n-i+k-1,n-i)] over 1<=i<=n.
%F a(n) =a(n-1)*A055462(n) =Product[i^A000332(n-i)] over 1<=i<=n.
%F a(n) ~ exp(11/72 - 5*n/6 - 4*n^2/3 - 11*n^3/18 - 25*n^4/288 + Zeta(3)*(n+2) / (8*Pi^2) + Zeta'(-3)/6) * n^(251/720 + n + 11*n^2/12 + n^3/3 + n^4/24) * (2*Pi)^((n+1)*(n+2)*(n+3)/12) / A^(11/6 + 2*n + n^2/2), where Zeta(3) = A002117, Zeta'(-3) = A259068 = 0.0053785763577743011444169742104138428956644397... and A = A074962 = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Jul 24 2015
%e a(4) =((4!*3!*2!*1!)*(3!*2!*1!)*(2!*1!)*(1!)) * ((3!*2!*1!)*(2!*1!)*(1!)) * ((2!*1!)*(1!)) * ((1!)) =24*6^3*2^6*1^10 =331776
%t Table[Product[i^Binomial[n-i+3,3],{i,1,n}],{n,0,10}] (* _Vaclav Kotesovec_, Jul 24 2015 *)
%t Nest[FoldList[Times,#]&,Range[0,8]!,3] (* _Harvey P. Dale_, Jan 08 2024 *)
%Y Cf. A000142, A000178, A055462, A057528, A260404 for first, second, third, fifth and sixth level factorials.
%K easy,nonn
%O 0,3
%A _Henry Bottomley_, Sep 02 2000