login
Prime recurrence: a(n+1) = a(n)-th prime, with a(1) = 4.
12

%I #24 Apr 07 2021 14:56:18

%S 4,7,17,59,277,1787,15299,167449,2269733,37139213,718064159,

%T 16123689073,414507281407,12055296811267,392654585611999,

%U 14199419938376521,565855918431234443

%N Prime recurrence: a(n+1) = a(n)-th prime, with a(1) = 4.

%C _Lubomir Alexandrov_ informs me that he studied this sequence in his 1965 notebook. - _N. J. A. Sloane_, May 23 2008

%D Alexandrov, Lubomir. "On the nonasymptotic prime number distribution." arXiv preprint math/9811096 (1998). (See Appendix.)

%H Lubomir Alexandrov, <a href="http://www1.jinr.ru/Preprints/2002/055(E5-2002-55).pdf">Prime Number Sequences And Matrices Generated By Counting Arithmetic Functions</a>, Communications of the Joint Institute of Nuclear Research, E5-2002-55, Dubna, 2002.

%t NestList[ Prime, 4, 13 ]

%o (Python)

%o from sympy import prime

%o from itertools import accumulate

%o def f(an, _): return prime(an)

%o print(list(accumulate([4]*12, f))) # _Michael S. Branicky_, Apr 07 2021

%Y Cf. A007097.

%K nonn,hard,more

%O 1,1

%A _Robert G. Wilson v_, Sep 26 2000

%E a(15)-a(17) from _Robert G. Wilson v_, Mar 07 2017 using Kim Walisch's primecount