Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 27 2022 21:11:05
%S 5,7,11,29,23,53,137,1217,47,59,7937,149,83,173
%N a(n) is the smallest prime of the form 1 + prime(n)*2^m, with m > 0.
%C The prime a(15) has 178 decimal digits. [Corrected by _Sean A. Irvine_, May 27 2022]
%H Alois P. Heinz, <a href="/A057247/b057247.txt">Table of n, a(n) for n = 1..75</a>
%H Jean-François Alcover, <a href="/A057247/a057247.txt">Table of n, a(n) for n=16..50.</a>
%F a(n) = Min{q|q is prime, p(n) is the n-th prime and q = 1+p(n)*2^b(n)}.
%e Sophie-Germain primes are here at n = 1, 2, 3, 5, 9, 10, .. etc. At n = 11, p(11) = 31 and in the sequence of q = 1+31*{2, 4, 8, 16, 32, 64, 128, 256} = {63, 125, 249, 497, 993, 1985, 3969, 7937}, the first prime is 7937, so b(11) = 8, a(11) = 7937.
%p a:= proc(n) option remember; local p, m, t; p:= ithprime(n);
%p for m do t:= 1+p*2^m; if isprime(t) then return t fi od
%p end:
%p seq(a(n), n=1..15); # _Alois P. Heinz_, May 27 2022
%t a[n_] := (For[pn = Prime[n]; p = 2, p < 3*10^8 (* large enough to compute 50 terms except a(15) *), p = NextPrime[p], m = Log[2, (p-1)/pn]; If[m > 0 && IntegerQ[m], Print["a(", n, ") = ", p]; Return[p]]]; Print["a(", n, ") not found ", p]; 0); Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Nov 08 2016 *)
%o (Python)
%o from sympy import isprime, prime
%o def a(n):
%o m, pn = 1, prime(n)
%o while not isprime(1 + pn*2**m): m += 1
%o return 1 + pn*2**m
%o print([a(n) for n in range(1, 21)]) # _Michael S. Branicky_, May 27 2022
%Y Cf. A058887, A005384, A005385, A057192.
%K nonn
%O 1,1
%A _Labos Elemer_, Jan 10 2001
%E Title clarified by _Sean A. Irvine_, May 27 2022